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Abstract— In this work, analysis of the multiple access in-
terference (MAI) for synchronous CDMA systems is carried out
for the BPSK modulation with random signature sequences in
additive white Gaussian noise (AWGN) environment. In this
analysis, downlink scenario is considered for two different cases:
(1) with perfect power control, and (2) with imperfect power
control. Expressions for the probability density function (pdf)
of MAI and MAI plus noise are derived for the two cases as a
function of number of users and spreading factor. Gaussian ap-
proximation is also developed for these scenarios. Close agree-
ment between analytical analysis and simulation results is ob-
tained for different scenarios of number of users and spreading
lengths.

I. Introduction

It is well known that MAI is a limiting factor in
the performance of multiuser systems. Therefore, the
characterization of MAI is important in the perfor-
mance analysis of multiuser systems.

Two approaches for DS-CDMA, operating on
AWGN channels, have been widely reported in the
literature. The first approach presumes that exact
BER evaluation is intractable or numerically cumber-
some, so accurate bit-error rate (BER) approxima-
tions are sought [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11]. Perhaps the most widely cited and most
widely used approximation is the so-called standard
Gaussian approximation (SGA) [1]-[3], [6]-[11]. In the
SGA, a central limit theorem (CLT) is employed to ap-
proximate the sum of the multiple-access interference
(MAI) signals as an additive white-Gaussian process
additional to the background Gaussian noise process.
The receiver design, thus, consists of a conventional
single-user matched filter (correlation receiver) to de-
tect the desired user signal. The average variance
of the MAI over all possible operating conditions is
used to compute the signal-to-noise ratio (SNR) at
the filter (correlator) output. The SGA is widely
used because it is easy to apply; however, it is ob-
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served that performance analysis based on using the
SGA often overestimate the system performance, es-
pecially when the number of users in the system is
small [4]. These limitations have motivated research
to improve the accuracy of the SGA. In [9], the accu-
racy of the SGA was improved by using the standard
Hermite polynomial error correction method. In [12],
the statistics of the MAI signals with random signa-
ture sequences were extensively studied. Based on
the work of [12], [4] later introduced a method termed
improved Gaussian approximation (IGA). The IGA is
more accurate than the SGA, especially for a small
number of active users [4]. However, the IGA com-
putation requires numerical integration and multiple
numerical convolutions. This method was simplified
in [5] such that neither knowledge of the conditional
variance distribution, nor numerical integration, nor
convolution is necessary to achieve acceptable BER
estimation. Thus, it is termed simplified IGA (SIGA)
[5]. Later, Morrow [11] further simplified the expres-
sion attained in [5] without significant penalty in the
BER accuracy. More recently, based on the work of
[5], Young C. Yoon gave a generalized simplified im-
proved gaussian approximation that can be applied
to band-limited pulse shapes as well as general pulse
shapes [14].

The second approach is to perform the evaluation
of the CDMA system BER without any knowledge
of or assumption about the MAI distribution. Many
of these techniques are based on extensions of previ-
ous studies of inter-symbol interference (ISI) systems.
These methods include the moment space technique
[13], characteristic function (CF) method [15], method
of moments [16], and an approximate Fourier series
method [17]. In [15], Geraniotis and Pursley used the
CF method to evaluate CDMA system performance in
an AWGN channel. Generally, these techniques can
achieve more accurate BER estimate than CLT-based
approximations at the expense of much higher com-
putational complexity.

In this work, analysis of MAI for synchronous
CDMA systems is carried out for BPSK with ran-
dom signature sequences in AWGN channel using a
novel approach. The main contribution of the work
presented is that analysis is carried out without using
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the Gaussian approximation for MAI. Consequently,
new closed form expressions for the MAI are derived
for both perfect power control and imperfect power
control scenarios.

The paper is organized as follows. Following this in-
troduction, the system model considered for the anal-
ysis is presented in Section II. The receiver decision
statistic is obtained in Section III and the pdf of MAI
is obtained in Section IV. Simulation results are pre-
sented in Section VI. Finally, the paper is concluded
in Section VII.

II. System Model

A synchronous DS-CDMA transmitter model for
the downlink of a mobile radio network is considered
as shown in Figure (1). If there are K users in the
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s2(t)
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n(t)

y(t)

Fig. 1. System Model in AWGN

system, then the signal at the receiver input is given
by

y(t) =
∞∑

i=−∞

K∑
k=1

Akbi,ksi,k(t) + n(t) (1)

where
• si,k(t) is the random signature waveform of the kth
user defined in iTb ≤ t ≤ (i + 1)Tb. si,k(t) is normal-
ized to have unit energy i.e.,

∫ (i+1)Tb

iTb

|si,k(t)|2dt = 1 (2)

The signature waveform of length Nc = Tb/Tc is de-
fined as

si,k(t) =
Nc∑
j=1

ci,k,jrect
( t + .5Tc − jTc

Tc

)
(3)

for (j − 1)Tc ≤ t ≤ jTc where Tb

and Tc are bit period and chip interval, respectively.
{ci,k,j} is the normalized spreading sequence of user
k for the ith symbol which takes the values {−1, +1}

with equal probability. rect(t) is the rectangular chip
waveform defined as:

rect
( t − .5Tc

Tc

)
=

{
1, 0 ≤ t ≤ Tc

0, elsewhere

• {bi,k} is the input bit stream of the kth user having
support {bi,k} ∈ {−1, +1}.
• Ak is the transmitted amplitude of the kth user.
• n(t) is the additive white gaussian noise with vari-
ance σ2

n.
Since synchronous CDMA is considered, it is assumed
that the receiver has some means of achieving perfect
chip synchronization. The cross-correlation of the sig-
nature sequences are defined as

ρi,kj =
∫ iTb

(i−1)Tb

si,k(t)si,j(t)dt

=
Nc∑

m=1

ci,k,mci,j,m (4)

III. Receiver Decision Statistic

In conventional single-user digital communication
systems, the matched filter is used to generate suf-
ficient statistics for signal detection. This matched
filter is matched to the signature waveform of the de-
sired user (say user 1). It is worth mentioning that we
need exact knowledge of the desired user’s signature
sequence and the signal timing in order to implement
this detector. Without loss of generality, we can as-

y(t)
Matched Filter for
the desired user

r(t)

Fig. 2. Matched Filter matched to the signature waveform of
the desired user

sume the desired user to be user 1. Thus, the output
of the matched filter for the ith symbol is equivalent
to the correlator’s output sampled at symbol intervals,
that is,

ri =
∫ Tb

0

yi(t)si,1(t)dt (5)

Upon substituting the value of yi(t) from equ. (1) and
knowing that ρi,11 = 1, the output of the matched
filter for the ith symbol is found to be

ri = A1bi,1 +
K∑

k=2

Akbi,kρi,k1 + ni (6)

The above equation will serve as a basis for our anal-
ysis, especially the second term which corresponds to
the MAI. In the above, the first term (A1bi,1) is the
desired user’s data while the last term is due to the
additive noise.
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IV. The Pdf of MAI and MAI plus Noise

Denoting the MAI term by M , the MAI for the ith

symbol can be represented as

Mi =
K∑

k=2

Akbi,kρi,k1 (7)

Let us define a new random variable Xk such that

Xk
�
= bi,kρi,k1 (8)

Thus, it can be observed that the value of the random
variable Xk ranges between 1 and -1. Consequently,
we can set up Xk as follows:

Xk = (Nc − 2d)/Nc, d = 0, 1, · · ·, Nc (9)

where that d is a binomial random variable with equal
probability of success and failure, i.e.,

PD(d = r) =
(

Nc

r

)(1
2

)r(1
2

)Nc−r

If the interference from kth interfere is denoted by Ik,
then we can set up the MAI as

Mi =
K∑

k=2

Ik (10)

where

Ik = AkXk (11)

The characteristic function of a discrete random vari-
able with point mass function (PMF) PX(xi) is given
by:

ΦX(ω) =
∑

i

ejωxiPX(xi) (12)

Thus, the characteristic function of the discrete ran-
dom variable Ik can be obtained by substituting xi =
Ak(Nc − 2i)/Nc and found to be

ΦIk
(ω) =

Nc∑
i=0

ejωAk(Nc−2i)/Nc

(
Nc

i

)(1
2

)Nc

= ejωAk

(e−2jωAk/Nc + 1
2

)Nc

(13)

We know that that the characteristic function of a sum
of random variables is the product of their individ-
ual characteristic functions. Thus, the characteristic
function of MAI is given by:

ΦM (ω) =
K∏

k=2

ΦIk
(ω)

= ejω
∑K

k=2 Ak

K∏

k=2

e−2jωAk/Nc + 1

2

Nc
(14)

Next we discuss the two cases depending on the sce-
narios of power control.

A. Case 1: Scenario of Perfect Power Control

When there is a perfect power control, i.e., all the
users have equal power, that is,

Ak = 1, ∀ k (15)

As a result, the characteristic function of MAI will
become

ΦM (ω) = ejω(K−1) e−2jω/Nc + 1

2

(K−1)Nc
(16)

If the additive noise term ni, in equation (6), is
N (0, σ2

n), then its characteristic function is given by:

ΦN (ω) = e−σ2
nω2/2 (17)

If Zi denotes the MAI plus noise term, its character-
istic function, φZi

(ω), is given by:
φZi

(ω) = φMAIi
(ω)φN (ω)

= ejω(K−1) e−2jω/Nc + 1

2

(K−1)Nc
e−σ2

nω2/2

(18)

Eventually, the pdf of MAI plus noise is given by:

fZi(zi) =
1√

2πσ2
n

(K−1)Nc∑
l=0

(
(K − 1)Nc

l

)

×
(1

2

)(K−1)Nc

e
− (zi−(K−1)+2l/Nc)2

2σ2
n .(19)

B. Case 2: Scenario of Imperfect Power Control

When there is imperfect power control, the users
have different powers, that is,

Aj �= Ak, ∀ j, k (20)

Consequently, the characteristic function of MAI is
given by the equation (14). Now, we will investigate
the behavior of a single interferer.

We can set up the noise term ni in equation (6)
as the sum of (K − 1) terms each having zero mean
and equal variance σ2

n,k = σ2
n/(K −1). Hence, we can

rewrite the sum of MAI and noise as follows:

Zi = MAIi + ni

=
K∑

k=2

Ik +
K∑

k=2

nk

=
K∑

k=2

I
′
k (21)

where I
′
k = Ik + nk. Thus the characteristic function

of I
′
k, i.e., φI

′
k
(ω) is given by:

φI
′
k
(ω) = φIk

(ω)φnk
(ω)

= ejωAk

Nc∑
l=0

(
Nc

l

)(e−2jωAk/Nc

2

)l

×
(1

2

)Nc−l

e−σ2
n,kω2/2 (22)
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Finally, the pdf of the effective single interferer (I
′
k) is

obtained by inverse transform of characteristic func-
tion as follows:

fI
′
k
(zi) =

1
2π

∫ ∞

−∞
φI

′
k
(ω)e−jωzidω

=
1√

2πσ2
n,k

Nc∑
l=0

(
Nc

l

)(1
2

)Nc

×e
− (zi−Ak+2Akl/Nc)2

2σ2
n,k (23)

V. Gaussian Approximations for MAI

In this section, we have developed Gaussian approx-
imations for the pdf of MAI plus noise. It is a known
fact that pdf Gaussian distributed random variable
is completely characterized via two parameters, i.e.,
mean and variance of the random variable. Thus, in
order to derive the Gaussian approximation, we will
first evaluate the mean and the variance of the desired
random variable for both the cases of perfect and im-
perfect power control.

The MAI at the output of the matched filter is given
by equation (7). Using equation (8), we can rewrite
the equation (7) as follows:

MAIi =
K∑

k=2

AkXk (24)

where Xk is defined by the equation (9) such that d
is a binomial random variable with equal probability
of success and failure. Thus, we have

E[d] =
1
2
Nc and σ2

d =
1
4
Nc (25)

As a result, mean of MAI (μm) is given by:

μm =
K∑

k=2

Ak(1 − 2
Nc

E[d]) = 0 (26)

Assuming each interferer to be independent with zero
mean, the variance of MAI (σ2

m) is given by:

σ2
m =

K∑
k=2

E[A2
kX2

k ]

=
K∑

k=2

A2
kE[(1 − 2

Nc
d)2]

=
K∑

k=2

A2
k

Nc
(27)

A. Case 1: Scenario of Perfect Power Control

In case of perfect power control, the transmitted
signal power of all the users are equal, so without loss

of generality we can assume Ak = 1 ∀ k. Thus, using
equation (27), the variance of MAI with perfect power
control is given by:

σ2
m =

(K − 1)
Nc

(28)

Hence, Gaussian approximation for the pdf of MAI
is given by:

fMi
(mi) =

1√
2π

( (K−1)
Nc

) exp

[
−m2

i

2
( (K−1)

Nc

)
]

(29)

Since, the additive noise is independent with MAI and
has zero mean and variance σ2

n, thus, the mean and
the variance of overall MAI plus noise term (Zi) are
given by

μz = 0
and σ2

z = σ2
m + σ2

n

=
(K − 1)

Nc
+ σ2

n (30)

Hence, Gaussian approximation for the pdf of Zi is
given by:

fZi
(zi) =

1√
2π

( (K−1)
Nc

+ σ2
n

) exp

[
−z2

i

2
( (K−1)

Nc
+ σ2

n

)
]

(31)

B. Case 2: Scenario of Imperfect Power Control

In case of imperfect power control, the transmit-
ted signal power of users are unequal, i.e. Aj �=
Ak, ∀ j, k. Thus, the variance of MAI with perfect
power control is given by equation (27). Thus, the
Gaussian approximation for the pdf of MAI is given
by:

fMi
(mi) =

1√
2π

(∑K
k=2

A2
k

Nc

) exp

[
−m2

i

2
(∑K

k=2
A2

k

Nc

)
]

(32)
the mean and the variance of overall MAI plus noise
term (Zi) are given by

μz = 0
and σ2

z = σ2
m + σ2

n

= σ2
n +

K∑
k=2

A2
k

Nc
(33)

Hence, the Gaussian approximation for the pdf of Zi

is given by:

fZi(zi) =
1√

2π
(
σ2

n +
∑K

k=2
A2

k

Nc

)exp

[
−z2

i

2
(
σ2

n +
∑K

k=2
A2

k

Nc

)
]

(34)
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Fig. 3. Comparison between Analytical and Experimental re-
sults for the pdf of MAI plus noise with Perfect Power Control
for 4 users

VI. Simulation Results

Simulation results are presented in this section to
validate the theoretical findings. The pdf for MAI plus
noise derived for the two different cases, i.e., with per-
fect and imperfect power control, given by equations
(19) and (23), respectively, are investigated via sim-
ulations. These analytical results are compared with
the simulation one.

In simulation, we have used random signature se-
quences of length 31 and chip waveforms are rectan-
gular. Signal to noise ratio is kept 20 dB for all the
cases. Figures 3, and 4 show the comparison of exper-
imental and analytical results for the pdf of MAI plus
noise with perfect power control for 4 and 20 users,
respectively. The results show that the overall behav-
ior of MAI plus noise in AWGN with perfect power
control is normal distributed. As can be seen from
these figures, close agreement between analytical re-
sult and simulation is obtained. Also, it is obvious
from these figures that the variance of MAI increases
with the increase in number of users which is verifying
the theoretical result.

Next, simulation is carried out to investigate the
accuracy of the Gaussian approximations derived for
MAI which are given by equations (29) and (32) with
perfect and imperfect control, respectively. Figures 5,
and 6 show the Gaussian approximated pdf of MAI
plus noise with perfect power control for 4 and 20
users, respectively. The results show the validation
of Gaussian approximation. Similarly, Figure 7 shows
the pdf of single interferer with perfect power con-
trol for 4 users verifying the use of Gaussian approx-
imation. It can be inferred from the result of single
interferer that overall MAI will also be Gaussian.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Experimental
Analytical

Fig. 4. Comparison between Analytical and Experimental re-
sults for the pdf of MAI plus noise with Perfect Power Control
for 20 users
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1
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Fig. 5. Comparison between Exact and Gaussian approxima-
tion for the pdf of MAI plus noise with Perfect Power Control
for 4 users

VII. Conclusion

This work has presented the investigation of MAI
in synchronous CDMA systems is for the BPSK mod-
ulation with random signature sequences in additive
white Gaussian noise channel. As a result, closed form
expressions for the pdf of MAI and MAI plus noise are
derived for both perfect and imperfect power control
scenarios. It is shown that the pdf of MAI and MAI
plus noise is a function of the number of transmitted
users and the spreading factor. Gaussian approxima-
tion is also developed for these pdfs which are then
compared with the exact pdfs. Simulation results pre-
sented support our theoretical analysis.
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Fig. 6. Comparison between Exact and Gaussian approxima-
tion for the pdf of MAI plus noise with Perfect Power Control
for 20 users
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Fig. 7. Comparison between Exact and Gaussian approxima-
tion for the pdf of MAI plus noise with Imperfect Power Control
for 4 users
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